New approach for T-wave peak detection and T-wave end location in 12-lead paced ECG signals based on a mathematical model.

نویسندگان

  • João P V Madeiro
  • William B Nicolson
  • Paulo C Cortez
  • João A L Marques
  • Carlos R Vázquez-Seisdedos
  • Narmadha Elangovan
  • G Andre Ng
  • Fernando S Schlindwein
چکیده

This paper presents an innovative approach for T-wave peak detection and subsequent T-wave end location in 12-lead paced ECG signals based on a mathematical model of a skewed Gaussian function. Following the stage of QRS segmentation, we establish search windows using a number of the earliest intervals between each QRS offset and subsequent QRS onset. Then, we compute a template based on a Gaussian-function, modified by a mathematical procedure to insert asymmetry, which models the T-wave. Cross-correlation and an approach based on the computation of Trapezium's area are used to locate, respectively, the peak and end point of each T-wave throughout the whole raw ECG signal. For evaluating purposes, we used a database of high resolution 12-lead paced ECG signals, recorded from patients with ischaemic cardiomyopathy (ICM) in the University Hospitals of Leicester NHS Trust, UK, and the well-known QT database. The average T-wave detection rates, sensitivity and positive predictivity, were both equal to 99.12%, for the first database, and, respectively, equal to 99.32% and 99.47%, for QT database. The average time errors computed for T-wave peak and T-wave end locations were, respectively, -0.38±7.12 ms and -3.70±15.46 ms, for the first database, and 1.40±8.99 ms and 2.83±15.27 ms, for QT database. The results demonstrate the accuracy, consistency and robustness of the proposed method for a wide variety of T-wave morphologies studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Macroscopic Visualization of the Heart Electrical Activity Via an Algebraic Computer Model

In this study, a mathematical model is developed based on algebraic equations which is capable of generating artificially normal events of electrocardiogram (ECG) signals such as P-wave, QRS complex, and T-wave. This model can also be implemented for the simulation of abnormal phenomena of electrocardiographic signals such as ST-segment episodes (i.e. depression, elevation, and sloped ascending...

متن کامل

A Unified Framework for Delineation of Ambulatory Holter ECG Events via Analysis of a Multiple-Order Derivative Wavelet-Based Measure

In this study, a new long-duration holter electrocardiogram (ECG) major events detection-delineation algorithm is described which operates based on the false-alarm error bounded segmentation of a decision statistic with simple mathematical origin. To meet this end, first three-lead holter data is pre-processed by implementation of an appropriate bandpass finite-duration impulse response (FIR) f...

متن کامل

Continuous and Cuffless Blood Pressure Monitoring Based on ECG and SpO2 Signals By Using Microsoft Visual C Sharp

Background: One of the main problems especially in operating room and monitoring devices is measurement of Blood Pressure (BP) by sphygmomanometer cuff.Objective: In this study we designed a new method to measure BP changes continuously for detecting information between cuff inflation times by using vital signals in monitoring devices. This will be achieved by extraction of the time difference ...

متن کامل

New approach for T-wave end detection on electrocardiogram: Performance in noisy conditions

BACKGROUND The detection of T-wave end points on electrocardiogram (ECG) is a basic procedure for ECG processing and analysis. Several methods have been proposed and tested, featuring high accuracy and percentages of correct detection. Nevertheless, their performance in noisy conditions remains an open problem. METHODS A new approach and algorithm for T-wave end location based on the computat...

متن کامل

Morphology-matching-based R-wave detection for noise-robust ECG gating

Background Accurate ECG R-wave detection is crucial for cardiac gating in MRI. However, in high-field MRI systems, it is hard to detect R-waves in ECG signals accurately, because the amplitude of the ECG signal may be smaller than that of the noise induced by the MRI system. To overcome this issue, existing studies have focused on (a) acquiring additional ECG signals or on (b) improving the R-w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical engineering & physics

دوره 35 8  شماره 

صفحات  -

تاریخ انتشار 2013